

IMK CONTAINERS

Solar glass back electrode layer

Overview

AIC of a-Si is a promising method for preparing high-quality poly-Si seed layers on glass at low temperature ($\sim 450^\circ\text{C}$). To realise substrate-type thin-film poly-Si solar cells, the AIC process has to be performed.

What is a bilayer structured back electrode?

In summary, we present an innovative bilayer structured back electrode composed of a layer of low-cost Ni-doped natural graphite for interfacial charge extraction and a fusible metal alloy layer for charge transport.

Can a bilayer back electrode be deposited in a vacuum-free approach?

Here, we report a bilayer back electrode configuration consisting of an Ni-doped natural graphite layer with a fusible Bi-In alloy. This back electrode can be deposited in a vacuum-free approach and enables PSCs with a power conversion efficiency of 21.0%.

Can gold be used as a back metal electrode?

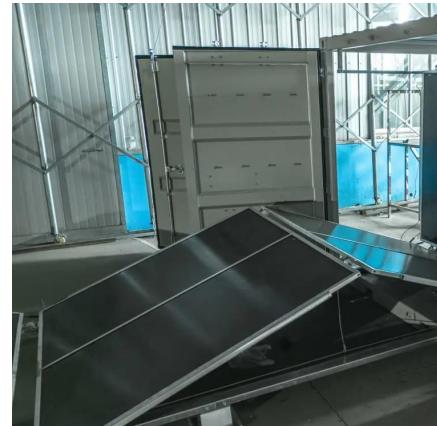
At present, gold is commonly used as the back metal electrode in state-of-the-art n-i-p structured PSCs due to its compatible work function, chemical inertness, and high conductivity. However, the high cost of gold and the expensive and time-consuming vacuum-based thin-film coating facilities may impede large-scale industrialization of PSCs.

How thick is a thin film solar cell?

Since the undercoat is not in direct contact with the solar cell, film's thicknesses varied in the range 10–200 nm. For the cell, we consider high-efficiency, thin-film solar cells, namely perovskite solar cells (PSCs), with optimal band-gap ($\sim 1.4\text{--}1.5\text{ eV}$) and $\text{PCE} > 20\%$.

Solar glass back electrode layer

Back electrode formation for poly-Si thin film solar cells on glass


Abstract Various conductive materials (Al, Mo and TiN) were deposited onto glass substrates to evaluate whether poly-Si seed layers can be formed on such substrates by ...

[Learn More](#)

[Dielectric Bragg Reflector as Back Electrode ...](#)

A remarkable average visible transparency (AVT) of 52% is achieved for a semi-transparent organic solar cell. Using a dielectric Bragg reflector as infrared reflecting back electrode, the optimized

[Learn More](#)

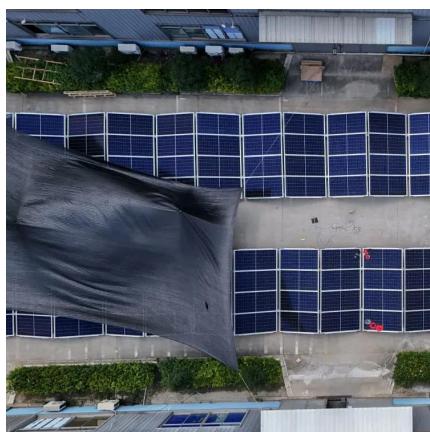
Infrared-reflective ultrathin-metal-film-based transparent electrode

In this work we study in-depth the antireflection and filtering properties of ultrathin-metal-film-based transparent electrodes (MTEs) integrated in thin-film solar cells.

[Learn More](#)

[Fabrication of anode and cathode layers for back-contact solar ...](#)

Abstract The concept of back-contact device architecture for perovskite solar cells (PSCs) is a promising alternative to PSCs with the traditional sandwich-type device ...


[Learn More](#)

[Effect of Glass-Coated Al Paste on Back-Surface Field ...](#)

EFFECT OF GLASS-COATED Al PASTE ON BACK-SURFACE FIELD FORMATION IN Si SOLAR CELLS
In this study, glass frit was coated uniformly on the surface ...

[Learn More](#)

[Dielectric Bragg Reflector as Back Electrode for ...](#)

Ternary semitransparent organic solar cells with a laminated top electrode

Abstract Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate ...

[Learn More](#)

[Effect of back electrode composition on Copper Indium ...](#)

Engineering a back electrode is one of the key factors in generating a high performance Copper Indium Gallium Selenide (CIGS) solar cell. For traditional CIGS films ...

[Learn More](#)

A remarkable average visible transparency (AVT) of 52% is achieved for a semi-transparent organic solar cell. Using a dielectric Bragg reflector as infrared reflecting back ...

[Learn More](#)

[Nickel-Doped Graphite and Fusible Alloy Bilayer Back ...](#)

In summary, we present an innovative bilayer structured back electrode composed of a layer of low-cost Ni-doped natural graphite for interfacial charge extraction and a fusible ...

[Learn More](#)

[Sputtering of Molybdenum as a Promising Back Electrode ...](#)

Sb₂S₃ is rapidly developed as light absorber material for solar cells due to its excellent photoelectric properties. However, the use of the organic hole transport layer of Spiro ...

[Learn More](#)

[Bifacial CdS/CdTe thin-film solar cells using a transparent ...](#)

A hybrid silver nanowires (AgNWs)/indium tin oxide (ITO) contact was used as a transparent back-electrode to fabricate a bifacial CdS/CdTe thin-film solar cell. The ...

[Learn More](#)

Contact Us

For catalog requests, pricing, or partnerships, please visit:

<https://fundacjawandea-imk.pl>

Scan QR Code for More Information

<https://fundacjawandea-imk.pl>